J is thus the determinant of the Jacobian of the transformation, or the "functional determinant."

The strain, $N_{j k}$, is defined, somewhat arbitrarily, from the difference in the squares of the lengths of line elements by:

$$
\begin{gather*}
2 N_{j k} d a_{j} d a_{k}=d x_{i} d x_{i}-d a_{i} d a_{i} \\
N_{j k}=1 / 2\left(\frac{\partial x_{i}}{\partial a_{j}} \frac{\partial x_{i}}{\partial a_{k}}-\delta_{j k}\right) \tag{2.15}
\end{gather*}
$$

Here and in the following the Einstein summation convention for repeated subscripts applies. $\delta_{j k}$ is the Kronecker delta.

Expanding the internal (strain) energy in a power series in the strains, one obtains (at constant entropy):

$$
\begin{gather*}
\rho_{0}[E(N, S)-E(0, S)]=1 / 2 c_{i j k 1}^{S} N_{i j} N_{k 1}+1 / 6 c_{i j k 1 m n} N_{i j} N_{k 1} N_{m n} \\
+1 / 24 c_{i j k 1 m n p q}^{S} N_{i j} N_{k 1} N_{m n} N_{p q}+\ldots \tag{2.16}
\end{gather*}
$$

In this expression the $c_{i j k}^{S}$. . . , represent the second and higher order isentropic elastic stiffness coefficients. The first-order term is missing since the reference state is considered to be one of zero stress and strain.

We now define quantities, called thermodynamic tensions, by

$$
\begin{equation*}
t_{i j}=\rho_{0}\left(\frac{\partial E}{\partial N_{i j}}\right) \tag{2.17}
\end{equation*}
$$

In terms of these quantities the elastic constants are

$$
c_{i j k 1}^{s}=\left(\frac{\partial t_{i j}}{\partial N_{k 1}}\right)_{s}=\frac{\partial^{2} E}{\partial N_{i j} \partial N_{k l}}
$$

and similariy for the higher order coefficients. Consequently,

$$
\rho_{0} d E=t_{i j} d N_{i j}(d S=0)
$$

Finally, the equilibrium (non-dissipative) components of the stress are obtained from the thermodynamic tensic: y the relations,

$$
\begin{equation*}
c_{k . .7}-(1 / j)_{\partial a_{j}}^{\partial x_{k}} \frac{\partial x_{m}}{\partial a_{i}} t_{i j} \tag{2.18}
\end{equation*}
$$

The above formulas provide isentropic constitutive relations in terms of the elastic stiffness coefficients. Other forms of constitutive relations can, of course, be derived in a similar fashion.

Low pressure acoustic measurements yield a mixed third-order constant of the form:

$$
C_{i j k m p q}=\left(\frac{\partial C_{1 j k m}^{S}}{\partial N_{p q}}\right)_{T}
$$

where the subscript T means the derivative is taken at constant temperature. The corresponding purely isentropic constant is given by:

$$
\begin{equation*}
c_{i j k m p q}^{s}=c_{i j k m p q}+\left(T / \rho_{o} c_{t}\right) c_{k m p q}^{s} \alpha_{u v}\left[c_{i j k m r s} \alpha_{r s}-\left(\frac{\partial c_{i j k m}^{s}}{\partial T}\right)_{t}\right] \tag{2.19}
\end{equation*}
$$

where C_{t} is the specific heat at constant tension and the $\alpha_{u v}$ are thermal expansion ccefficients,

$$
\alpha_{u v}=\left(\frac{\partial N_{u v}}{\partial T}\right)_{t}
$$

In view of the symmetry of the stress and strain tensors, the number of subscripts can be reduced by adopting the following convention:

$$
\begin{array}{ll}
11 \rightarrow 1 & 32 \rightarrow 4 \\
22 \rightarrow 2 & 31 \rightarrow 5 \\
33 \rightarrow 3 & 21 \rightarrow 6
\end{array}
$$

This convention is employed in the following.

